\(\int \frac {\sec ^3(c+d x) \tan ^4(c+d x)}{a+a \sin (c+d x)} \, dx\) [885]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 150 \[ \int \frac {\sec ^3(c+d x) \tan ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {3 \text {arctanh}(\sin (c+d x))}{128 a d}+\frac {3 \sec (c+d x) \tan (c+d x)}{128 a d}+\frac {\sec ^3(c+d x) \tan (c+d x)}{64 a d}-\frac {\sec ^5(c+d x) \tan (c+d x)}{16 a d}+\frac {\sec ^5(c+d x) \tan ^3(c+d x)}{8 a d}-\frac {\tan ^6(c+d x)}{6 a d}-\frac {\tan ^8(c+d x)}{8 a d} \]

[Out]

3/128*arctanh(sin(d*x+c))/a/d+3/128*sec(d*x+c)*tan(d*x+c)/a/d+1/64*sec(d*x+c)^3*tan(d*x+c)/a/d-1/16*sec(d*x+c)
^5*tan(d*x+c)/a/d+1/8*sec(d*x+c)^5*tan(d*x+c)^3/a/d-1/6*tan(d*x+c)^6/a/d-1/8*tan(d*x+c)^8/a/d

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2914, 2691, 3853, 3855, 2687, 14} \[ \int \frac {\sec ^3(c+d x) \tan ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {3 \text {arctanh}(\sin (c+d x))}{128 a d}-\frac {\tan ^8(c+d x)}{8 a d}-\frac {\tan ^6(c+d x)}{6 a d}+\frac {\tan ^3(c+d x) \sec ^5(c+d x)}{8 a d}-\frac {\tan (c+d x) \sec ^5(c+d x)}{16 a d}+\frac {\tan (c+d x) \sec ^3(c+d x)}{64 a d}+\frac {3 \tan (c+d x) \sec (c+d x)}{128 a d} \]

[In]

Int[(Sec[c + d*x]^3*Tan[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

(3*ArcTanh[Sin[c + d*x]])/(128*a*d) + (3*Sec[c + d*x]*Tan[c + d*x])/(128*a*d) + (Sec[c + d*x]^3*Tan[c + d*x])/
(64*a*d) - (Sec[c + d*x]^5*Tan[c + d*x])/(16*a*d) + (Sec[c + d*x]^5*Tan[c + d*x]^3)/(8*a*d) - Tan[c + d*x]^6/(
6*a*d) - Tan[c + d*x]^8/(8*a*d)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2914

Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]
), x_Symbol] :> Dist[1/a, Int[Cos[e + f*x]^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[1/(b*d), Int[Cos[e + f*x]
^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2
 - b^2, 0] && IntegerQ[n] && (LtQ[0, n, (p + 1)/2] || (LeQ[p, -n] && LtQ[-n, 2*p - 3]) || (GtQ[n, 0] && LeQ[n,
 -p]))

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sec ^5(c+d x) \tan ^4(c+d x) \, dx}{a}-\frac {\int \sec ^4(c+d x) \tan ^5(c+d x) \, dx}{a} \\ & = \frac {\sec ^5(c+d x) \tan ^3(c+d x)}{8 a d}-\frac {3 \int \sec ^5(c+d x) \tan ^2(c+d x) \, dx}{8 a}-\frac {\text {Subst}\left (\int x^5 \left (1+x^2\right ) \, dx,x,\tan (c+d x)\right )}{a d} \\ & = -\frac {\sec ^5(c+d x) \tan (c+d x)}{16 a d}+\frac {\sec ^5(c+d x) \tan ^3(c+d x)}{8 a d}+\frac {\int \sec ^5(c+d x) \, dx}{16 a}-\frac {\text {Subst}\left (\int \left (x^5+x^7\right ) \, dx,x,\tan (c+d x)\right )}{a d} \\ & = \frac {\sec ^3(c+d x) \tan (c+d x)}{64 a d}-\frac {\sec ^5(c+d x) \tan (c+d x)}{16 a d}+\frac {\sec ^5(c+d x) \tan ^3(c+d x)}{8 a d}-\frac {\tan ^6(c+d x)}{6 a d}-\frac {\tan ^8(c+d x)}{8 a d}+\frac {3 \int \sec ^3(c+d x) \, dx}{64 a} \\ & = \frac {3 \sec (c+d x) \tan (c+d x)}{128 a d}+\frac {\sec ^3(c+d x) \tan (c+d x)}{64 a d}-\frac {\sec ^5(c+d x) \tan (c+d x)}{16 a d}+\frac {\sec ^5(c+d x) \tan ^3(c+d x)}{8 a d}-\frac {\tan ^6(c+d x)}{6 a d}-\frac {\tan ^8(c+d x)}{8 a d}+\frac {3 \int \sec (c+d x) \, dx}{128 a} \\ & = \frac {3 \text {arctanh}(\sin (c+d x))}{128 a d}+\frac {3 \sec (c+d x) \tan (c+d x)}{128 a d}+\frac {\sec ^3(c+d x) \tan (c+d x)}{64 a d}-\frac {\sec ^5(c+d x) \tan (c+d x)}{16 a d}+\frac {\sec ^5(c+d x) \tan ^3(c+d x)}{8 a d}-\frac {\tan ^6(c+d x)}{6 a d}-\frac {\tan ^8(c+d x)}{8 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.67 \[ \int \frac {\sec ^3(c+d x) \tan ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {9 \text {arctanh}(\sin (c+d x))+\frac {16+25 \sin (c+d x)-39 \sin ^2(c+d x)-72 \sin ^3(c+d x)+24 \sin ^4(c+d x)-9 \sin ^5(c+d x)-9 \sin ^6(c+d x)}{(-1+\sin (c+d x))^3 (1+\sin (c+d x))^4}}{384 a d} \]

[In]

Integrate[(Sec[c + d*x]^3*Tan[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

(9*ArcTanh[Sin[c + d*x]] + (16 + 25*Sin[c + d*x] - 39*Sin[c + d*x]^2 - 72*Sin[c + d*x]^3 + 24*Sin[c + d*x]^4 -
 9*Sin[c + d*x]^5 - 9*Sin[c + d*x]^6)/((-1 + Sin[c + d*x])^3*(1 + Sin[c + d*x])^4))/(384*a*d)

Maple [A] (verified)

Time = 0.92 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.77

method result size
derivativedivides \(\frac {-\frac {1}{96 \left (\sin \left (d x +c \right )-1\right )^{3}}-\frac {3}{128 \left (\sin \left (d x +c \right )-1\right )^{2}}+\frac {1}{128 \sin \left (d x +c \right )-128}-\frac {3 \ln \left (\sin \left (d x +c \right )-1\right )}{256}-\frac {1}{64 \left (1+\sin \left (d x +c \right )\right )^{4}}+\frac {1}{24 \left (1+\sin \left (d x +c \right )\right )^{3}}-\frac {1}{64 \left (1+\sin \left (d x +c \right )\right )^{2}}-\frac {1}{32 \left (1+\sin \left (d x +c \right )\right )}+\frac {3 \ln \left (1+\sin \left (d x +c \right )\right )}{256}}{d a}\) \(115\)
default \(\frac {-\frac {1}{96 \left (\sin \left (d x +c \right )-1\right )^{3}}-\frac {3}{128 \left (\sin \left (d x +c \right )-1\right )^{2}}+\frac {1}{128 \sin \left (d x +c \right )-128}-\frac {3 \ln \left (\sin \left (d x +c \right )-1\right )}{256}-\frac {1}{64 \left (1+\sin \left (d x +c \right )\right )^{4}}+\frac {1}{24 \left (1+\sin \left (d x +c \right )\right )^{3}}-\frac {1}{64 \left (1+\sin \left (d x +c \right )\right )^{2}}-\frac {1}{32 \left (1+\sin \left (d x +c \right )\right )}+\frac {3 \ln \left (1+\sin \left (d x +c \right )\right )}{256}}{d a}\) \(115\)
risch \(-\frac {i \left (18 i {\mathrm e}^{12 i \left (d x +c \right )}+9 \,{\mathrm e}^{13 i \left (d x +c \right )}-666 i {\mathrm e}^{10 i \left (d x +c \right )}+42 \,{\mathrm e}^{11 i \left (d x +c \right )}+1108 i {\mathrm e}^{8 i \left (d x +c \right )}+375 \,{\mathrm e}^{9 i \left (d x +c \right )}-1108 i {\mathrm e}^{6 i \left (d x +c \right )}+172 \,{\mathrm e}^{7 i \left (d x +c \right )}+666 i {\mathrm e}^{4 i \left (d x +c \right )}+375 \,{\mathrm e}^{5 i \left (d x +c \right )}-18 i {\mathrm e}^{2 i \left (d x +c \right )}+42 \,{\mathrm e}^{3 i \left (d x +c \right )}+9 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{192 \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{8} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{6} d a}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{128 a d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{128 d a}\) \(231\)
parallelrisch \(\frac {\left (-504 \cos \left (2 d x +2 c \right )-252 \cos \left (4 d x +4 c \right )-72 \cos \left (6 d x +6 c \right )-9 \cos \left (8 d x +8 c \right )-315\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (504 \cos \left (2 d x +2 c \right )+252 \cos \left (4 d x +4 c \right )+72 \cos \left (6 d x +6 c \right )+9 \cos \left (8 d x +8 c \right )+315\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-1998 \sin \left (3 d x +3 c \right )+138 \sin \left (5 d x +5 c \right )+18 \sin \left (7 d x +7 c \right )+2944 \cos \left (2 d x +2 c \right )-1088 \cos \left (4 d x +4 c \right )+128 \cos \left (6 d x +6 c \right )+16 \cos \left (8 d x +8 c \right )+4026 \sin \left (d x +c \right )-2000}{384 a d \left (\cos \left (8 d x +8 c \right )+8 \cos \left (6 d x +6 c \right )+28 \cos \left (4 d x +4 c \right )+56 \cos \left (2 d x +2 c \right )+35\right )}\) \(260\)
norman \(\frac {-\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{64 d a}-\frac {3 \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d a}-\frac {3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}-\frac {3 \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}+\frac {43 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{48 d a}+\frac {43 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{48 d a}+\frac {17 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}+\frac {17 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}+\frac {7 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}+\frac {7 \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32 d a}+\frac {387 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d a}+\frac {387 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{64 d a}+\frac {299 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{48 d a}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{8} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{6}}-\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{128 a d}+\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{128 a d}\) \(315\)

[In]

int(sec(d*x+c)^7*sin(d*x+c)^4/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(-1/96/(sin(d*x+c)-1)^3-3/128/(sin(d*x+c)-1)^2+1/128/(sin(d*x+c)-1)-3/256*ln(sin(d*x+c)-1)-1/64/(1+sin(d
*x+c))^4+1/24/(1+sin(d*x+c))^3-1/64/(1+sin(d*x+c))^2-1/32/(1+sin(d*x+c))+3/256*ln(1+sin(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.11 \[ \int \frac {\sec ^3(c+d x) \tan ^4(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {18 \, \cos \left (d x + c\right )^{6} - 6 \, \cos \left (d x + c\right )^{4} + 36 \, \cos \left (d x + c\right )^{2} - 9 \, {\left (\cos \left (d x + c\right )^{6} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{6}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + 9 \, {\left (\cos \left (d x + c\right )^{6} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{6}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (9 \, \cos \left (d x + c\right )^{4} - 90 \, \cos \left (d x + c\right )^{2} + 56\right )} \sin \left (d x + c\right ) - 16}{768 \, {\left (a d \cos \left (d x + c\right )^{6} \sin \left (d x + c\right ) + a d \cos \left (d x + c\right )^{6}\right )}} \]

[In]

integrate(sec(d*x+c)^7*sin(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/768*(18*cos(d*x + c)^6 - 6*cos(d*x + c)^4 + 36*cos(d*x + c)^2 - 9*(cos(d*x + c)^6*sin(d*x + c) + cos(d*x +
c)^6)*log(sin(d*x + c) + 1) + 9*(cos(d*x + c)^6*sin(d*x + c) + cos(d*x + c)^6)*log(-sin(d*x + c) + 1) - 2*(9*c
os(d*x + c)^4 - 90*cos(d*x + c)^2 + 56)*sin(d*x + c) - 16)/(a*d*cos(d*x + c)^6*sin(d*x + c) + a*d*cos(d*x + c)
^6)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^3(c+d x) \tan ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**7*sin(d*x+c)**4/(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.17 \[ \int \frac {\sec ^3(c+d x) \tan ^4(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {2 \, {\left (9 \, \sin \left (d x + c\right )^{6} + 9 \, \sin \left (d x + c\right )^{5} - 24 \, \sin \left (d x + c\right )^{4} + 72 \, \sin \left (d x + c\right )^{3} + 39 \, \sin \left (d x + c\right )^{2} - 25 \, \sin \left (d x + c\right ) - 16\right )}}{a \sin \left (d x + c\right )^{7} + a \sin \left (d x + c\right )^{6} - 3 \, a \sin \left (d x + c\right )^{5} - 3 \, a \sin \left (d x + c\right )^{4} + 3 \, a \sin \left (d x + c\right )^{3} + 3 \, a \sin \left (d x + c\right )^{2} - a \sin \left (d x + c\right ) - a} - \frac {9 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a} + \frac {9 \, \log \left (\sin \left (d x + c\right ) - 1\right )}{a}}{768 \, d} \]

[In]

integrate(sec(d*x+c)^7*sin(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/768*(2*(9*sin(d*x + c)^6 + 9*sin(d*x + c)^5 - 24*sin(d*x + c)^4 + 72*sin(d*x + c)^3 + 39*sin(d*x + c)^2 - 2
5*sin(d*x + c) - 16)/(a*sin(d*x + c)^7 + a*sin(d*x + c)^6 - 3*a*sin(d*x + c)^5 - 3*a*sin(d*x + c)^4 + 3*a*sin(
d*x + c)^3 + 3*a*sin(d*x + c)^2 - a*sin(d*x + c) - a) - 9*log(sin(d*x + c) + 1)/a + 9*log(sin(d*x + c) - 1)/a)
/d

Giac [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.91 \[ \int \frac {\sec ^3(c+d x) \tan ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {36 \, \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{a} - \frac {36 \, \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right )}{a} + \frac {2 \, {\left (33 \, \sin \left (d x + c\right )^{3} - 87 \, \sin \left (d x + c\right )^{2} + 39 \, \sin \left (d x + c\right ) - 1\right )}}{a {\left (\sin \left (d x + c\right ) - 1\right )}^{3}} - \frac {75 \, \sin \left (d x + c\right )^{4} + 396 \, \sin \left (d x + c\right )^{3} + 786 \, \sin \left (d x + c\right )^{2} + 556 \, \sin \left (d x + c\right ) + 139}{a {\left (\sin \left (d x + c\right ) + 1\right )}^{4}}}{3072 \, d} \]

[In]

integrate(sec(d*x+c)^7*sin(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/3072*(36*log(abs(sin(d*x + c) + 1))/a - 36*log(abs(sin(d*x + c) - 1))/a + 2*(33*sin(d*x + c)^3 - 87*sin(d*x
+ c)^2 + 39*sin(d*x + c) - 1)/(a*(sin(d*x + c) - 1)^3) - (75*sin(d*x + c)^4 + 396*sin(d*x + c)^3 + 786*sin(d*x
 + c)^2 + 556*sin(d*x + c) + 139)/(a*(sin(d*x + c) + 1)^4))/d

Mupad [B] (verification not implemented)

Time = 19.52 (sec) , antiderivative size = 388, normalized size of antiderivative = 2.59 \[ \int \frac {\sec ^3(c+d x) \tan ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {3\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{64\,a\,d}+\frac {-\frac {3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}}{64}-\frac {3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}}{32}+\frac {7\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{32}+\frac {17\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}}{32}+\frac {387\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{64}+\frac {43\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{48}+\frac {299\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{48}+\frac {43\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{48}+\frac {387\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{64}+\frac {17\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{32}+\frac {7\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{32}-\frac {3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{32}-\frac {3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{64}}{d\,\left (a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}+2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}-5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-12\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}+9\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+30\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9-5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-40\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7-5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+30\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+9\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-12\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )} \]

[In]

int(sin(c + d*x)^4/(cos(c + d*x)^7*(a + a*sin(c + d*x))),x)

[Out]

(3*atanh(tan(c/2 + (d*x)/2)))/(64*a*d) + ((7*tan(c/2 + (d*x)/2)^3)/32 - (3*tan(c/2 + (d*x)/2)^2)/32 - (3*tan(c
/2 + (d*x)/2))/64 + (17*tan(c/2 + (d*x)/2)^4)/32 + (387*tan(c/2 + (d*x)/2)^5)/64 + (43*tan(c/2 + (d*x)/2)^6)/4
8 + (299*tan(c/2 + (d*x)/2)^7)/48 + (43*tan(c/2 + (d*x)/2)^8)/48 + (387*tan(c/2 + (d*x)/2)^9)/64 + (17*tan(c/2
 + (d*x)/2)^10)/32 + (7*tan(c/2 + (d*x)/2)^11)/32 - (3*tan(c/2 + (d*x)/2)^12)/32 - (3*tan(c/2 + (d*x)/2)^13)/6
4)/(d*(a + 2*a*tan(c/2 + (d*x)/2) - 5*a*tan(c/2 + (d*x)/2)^2 - 12*a*tan(c/2 + (d*x)/2)^3 + 9*a*tan(c/2 + (d*x)
/2)^4 + 30*a*tan(c/2 + (d*x)/2)^5 - 5*a*tan(c/2 + (d*x)/2)^6 - 40*a*tan(c/2 + (d*x)/2)^7 - 5*a*tan(c/2 + (d*x)
/2)^8 + 30*a*tan(c/2 + (d*x)/2)^9 + 9*a*tan(c/2 + (d*x)/2)^10 - 12*a*tan(c/2 + (d*x)/2)^11 - 5*a*tan(c/2 + (d*
x)/2)^12 + 2*a*tan(c/2 + (d*x)/2)^13 + a*tan(c/2 + (d*x)/2)^14))